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ANALYSIS OF THE THREE LOTEST ‘BENDING FREQUENCIES

OF’A ROTATING PROPELLER*

By F. Liebers

SUMMARY

Tb.e available literature on rotating propeller oscil-
lations reveals a lack of uniformity in interpretation,
particularly as concerns the data on the overtone frequen-
cy with respect to the centrifugal forces.

The present report is a survey of the existing data
for computing the bending frequency and a check on the
dependability of the calculating methods.

INTRODUCTION

Of the possible propeller oscillation modes, only the
bending oscillations have been explored to any consider-
able extent. There is no longer any doubt about the oc-
currence of the fundamental mode and the first and second
overtones in bending. A number of adequate causes to ex-
cite the oscillation are also known. The occasionally
voiced opinion tk.at, owing to the great air damping of the
overtones, the exciting forces caused by the engine are
too small to incite flexural oscillations ofl dangerous am-
plitude, is hardly justified. A rough calculation for a
practical example revealed that the am~litudes of the
first overtone would have to reach amounts of the order of
magnitude of +5 cm (1.97 in.) at the free blade tip, to be
capalle of equalizing the exciting forces set up by the en-
gine. All damping other than air damping was, of course,
disregarded thereby, and allowed for in the customary semi-
steady fashion.
———————____—___________________________ .,________________ ——————_—__

*“Zur Berechnung der 3 tiefsten Biegefrequenzen der unlauf-
enden Schraube.” Luftfahrtforschung, August 31, 1935,
pp. 155-160.
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But for all other. invetitigations, .the exact knowledge
of the oscillation frequencies of the rotating propeller
is-of fundamental importance. And even here there still
seems to “prevail a certain doubtfulness. For example,
l?. W. Caldwell, in a recent reports gives new coefficients
again for the frequency formulas which are markedly unlike
the figures known heretofore, particularly for the over-
tones. On the other hand, M. Hansen and G. Mesmer~s re-
port, putlished in 1933, which proved the occurrence of
overtones in experiments failed to give a correct picture
of the previous experiments, which chiefly concerned the
fundamental mode.

The chief aim in the following is to survey the exist-
ing data for computing the frequency of the rotating pro-
peller with “a view to elucidating the actually attained
dependability factor, at least in this point. This affords,
at the same time, a supplement to the calculation of the
overtones. A definite knowledge of the harmnnics at the
second overtone frequency ‘may~ for example, become of im-
portance when applied to the coupling with torsional os-
cillations for frequencies of the same order of magnitude.

Fundamental Hode

The frequency of a rotating propeller is usually ex-
pressed by

‘“k’ =A02 + c~2 (1)

(w = revolutions, C = constant = centrifugal .force coeffi-
cient, ho ,= ~=o = static frequency). Various writers

have ,c.omputed a number of such.formulas (reference 7) far
specially simple bar shapes~ wherein constants Lo and C
in (1) assumed different values~ depending on the particu-
lar visualization for the bar representing the propeller.
As a result, the frequency formula established for an ex-
ample considered tipi,cal, had to be considered as being of
general validity for real propellers. But this made the
problem subject to certain inaccuracies which, for the
centrifugal force coefficient C, caused a scatter of 40
percent or more. To illustrate: I’or the two idealized
propellers which had (1) a rectangular section with the
moment of inertia varying with the cube of the length, and
(2) a rectangular section with the moment of inertia vary-
ing with the square of the length - ““the centrifugal force
coefficients, C = 1.52 and C ~ 1.08, were computed. If,
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on the other hand, such discrepancies were deemed too seri-
ous - and rightly so - then it~becatie ‘fieeessa&y to ascer-
tain the elastic line from the exactly defined bar,form of
every single propeller, and then determine the C factor
from ,it each time, as was necessary in Southwell and
Goughis report (reference 2). The mathematical treatment of
the cen-trifugal force effect is quite tedious, especially
if it includes the overtones. Yor this reason, it has
never been attempted except in ideal cases~ sucha~”cit~d
abovec. d

,, ,’.
In’’poi;t:of fact; .tihe:co”mditions”relati~e to the fre-

quency rise ,of-the rotating propeiler is far more Simple
than ‘the.discrepancies in ,the data of the older literature.
seem to indicate. As they were all based on the elastic
line of t~e stationary bar, they are, strictly speaking,
applicable only for very low values”’of rop.mg And for
these, the f.a”ctor C is subordinate, because the p’e”rcent-”
age, of frequency increase itself is smal10 At the maximum

. .
number of revolutions + s 1.5. in question for the pro-

0
peller, the frequency rise due to centrifugal force
amounts, however~ to about 1,000 percent, an-das much as
50 percent even in the practicalx~ more important {– $s1

o
r.p.m. range. For these conditions the leveling effect of
the, centrifugal force must now become noticeable, which
makes ‘itself felt in ,suclia way that, with increasing ceil-

trifugal force, the oscillation modes of the unlike shaped
bars continue to become. alike and approach the oscillation
line of the flexurally weak cable. The latter as well as
lowest oscillation frequency of the cable are, however,
unaffected by the distribution of mass over the length.
(See Appendix. ) Thus the marked discrepancies of C in
the early experiments can scarcely be factual, as soon as
the centrifugal exceed.,the elastic forces.

This was, in principle, the result of the writer~s
investigation (references 3, 4, and 6) , made on the simple
premises that the %ending frequencies of two rotating
bars, even. if of marlked difference. in form, are practical-”
ly alike so long. as their static frequencies are the same.
This also permits the inclusion of bar forms o’thcr than
straight and untwisted, such a-s “are-found” on propellers-

.,
In these cases, riseof AO. ‘due to twist, admittedly

increases, hut the additional frequency rise due to ten- “
trifugal “force is determined largely by the mass distribu-

., . .

,,..
., ,. .. . .,, .-,.: ,.. ,... .
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tion along the bar axis itself rather than the sectional
orientation.

The centrifugal’force effect is therefore seen to be
practically unaffected by the propeller’ shape (that is,
also from erroneous idealizations of the propeller. shape).
Once it had been determined, the problem resolved itself
to defining the static frequency A. for ea,ch particular

case. This is, of course, markedly dependent on the shape
‘and other peculiarities of each propeller. Its true value
is best obtained by ‘test.

The mathematical exploration of these relationships”
(references 3 and 4) while, to be sure, no mathematically
exact treatment, nevertheless afforded an amply safe ap-
proximate solution on the basis of Rayleighis minimum equa-
tion:

(2)

wherei-n xl, X2 are functions of the lar form and the os-
cillation curve 3’1, T2 their values after formulating
the minimum, with the characteristic of being practically
invariant at constant ho against far-reaching changes in
bar fo.rm.$ Equation (2) was numerically conputed and then
replaced by the interpolation formula corrected for hub
effect:

(3)

so a’s to insure perfect freedom from tables or curves.
(See fig. 8, reference 4.) But the correction factor for
norrxal conditions is almost zero, as proved by Hansen and
liesmerts experimental data on section and inertia morn’ent
distribution (equation (32), reference 4), that it may be
disregarded altogether. On many propellers the concept of
rigid hub is definitely unjustified.**
————.—..—..——--—————-----——————.-——.-—-.-—...-—-.—:—.—.-.-.-———.-————--——————..-——___
*The modification of the bar for~l extended from cylindric-

al to linear and quadratically tapered bar together with
tapet of sectional inertia r.mrient from Iinear,.to squared law.
**If, in special cases (and for u > Lo) the omission of
the propeller is inadvisable, a slight error in hub size
neans only a minor correction errorc

.-. . ,,’ .
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Objections are raised in Hansen and blesmerls repo,rt
against the writerts effected idealization of blade form
and the subsequent option in the methbd of calculating the

,-.determining.root. section.., .!l?he,seobj.ect.i~.ns.areunfounded
according to the above arguments advanced relative to (2) ,
ina given” case* in conjunction with the ,smallness of the

. ku~ effect, a.s soon as the true sta.%ic frequency A. is

known (by test,, for-example), as particularly j?remised in
our last report (reference 6),

The use of, expression (3) as an” interpolation formula
is ~iholly optional. It is not aptly chosen as may be seen
from a quick comparison with results of the shape (1)., It
is mo~e elucidative ‘to expand “the numerically obtained fre-
quency ha conformably in powers of @ to conform with
the manner of expressing equation (l). With four concrete
values (which, in fact, is amply sufficient):

?, ~—— =
?LO

for # = O
.0

= 1.16 = 0;5 1, (reference 4, fig. 8)
= 1.51
= 1.95 =“ ;.5 J

equation (3) is replaced by

~.2.’

() ()

2 4“ 6
——

= 1 + 1.43 ;–
ho”. ()

- 0.20 ;–
()

+ 0.05 –@–
A.

(4)
0 0

OS ~!s I*5*
applicable to Then (4) affords the follow-

lb 0
ing: Ror

5<1’
the first and second terms suffice;

,“

for ~! approaching 1 and beyond, the higher powers are

of im ortance.
2

This decides, in addition, the coefficient
of u in the prove’d manner, ap licable to all practic-,
ally possible propeller forms. 7The value 1.43 itself
cannot change even on completion of the series. 14))i

With this manner of writing (4), the experimental
p“roof of the theoretical frequency of the rotating propel-
ler becomes quite apparent. T.o illustrate: Referring to
Hansen and Mesmer~k”’ptio’p’elle.rtest ‘(reference 7’), it first
establishes one and the same dependence of the frequency
on the r.p,ms for eight different propellers, and. then
this “is repeated through formula (1) with C = 1.450 The—.————— _______________________ _____ ____________________________
*That is, with extreme changes in blade form near the root
from the elementary forms relative to which (2) proved
‘1invariant. II .
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measurements e~t end to regonance cycle @ = A/2 (two exci-
tations per cyc16v. As far as this value, the agreement
with (4) .is practically complete (fig. 1)* Extension to
include the next “resonance w = A/1..5 (possible for pro-
pellers on 6- or 12-cylinder engines) should have been of
interest. We think it would have shown discrepancies from
the simpld extrapolation with C = 1.45. ~

,Our own experiments on elementary bars (reference 6)
intended t:o confirm the theoretical premises by allowing
for any possible blade characteristic (twist, camber, hub)
as well as extension to higher (J.)/hovalues, had already

proved the extended validity of the posed frequency formu-
las”.*

Following these arguments on a proved formula of gener-
al validity, together with its experimental confirmation,
should remove any doubt as to the definite determination of
the fundamental mode of the rotating propeller. Incident
to the determination of the static frequency ~. the fol-
lowing is noted:

Equation (4) is silent as regards the value of ~~;

its determination is a pro%lem in itself which, however,
is quickly and reliably obtained by experiment in nearly
every case. Even the development of a new type generally
affords an occasion for an experiment, If one is restrict-
ed to a mathematical treatment, there arc certain graph-
ical and mathematical methods available, such as those
used by Southwell (reference 1)’, Hohenemser (reference 5) ,
Hansen and Mesmer (reference 7), etc., whose results are,
however, restricted for the reason that they are contingent
upon certain omissions (twist, camber) “and appraisals (met-
al edges, propeller surface, etc.) quite a~art from the

. . ..
-.. . ..._-...--.—.——————_——————_———————__————.————————

*Under tilese t“est conditions, any discrepancy between the-
ory and test became~ of necessity, quite apparent, as
proved on two examples computed according to formula (l).
Hansen and Mesmerls criticism (reference 7) is without ba-
sis when implying the insertion of C = 1.52 in (1) for
comparison of the employed case of cylindrical bar. Berry
(reference 11) as well as Soufhwell and Gough (reference
12), shows c = 1*19 for the cylindrical bar. Admittedly,
the value 1.52 would Ilfit!lbetter for the wedge, which is

not at all surprising, accordin~ to (4) , but just as acci-
dental as that the C = 1,08, which fundamentally has the
same claim to general validity, did not fit.
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uncertain knowledge .of material constants (Young?s modulus,
density) in “many cases ’(l?ood screws).

.—

Yet another frequently underestimated source of error
is the presumption .of”absolutely rigid restraint at the root,
because the frequency .is quite responsive relative to the
edge condition.* Several practical examples for computing
the static frequency ho (for fundamental mode .and first
overtone) will b“e found in”reference 7. The calculation was
checked experimentally on 1:10 scale models. The agreement
is fairly close although Discrepancies up to 13 percent oc-
cur. One peculiar fact was that the calculated” values are
almost all alove the experimental values, contrary to the
‘expected’ oppdsite, because the kar twist is not allowed
for.. Forflthis,reason, it is advisable to make..a check test.

In. coriciusion,
.:

we point to a recent report by R“e%ssner
(reference 8), who investigated the }ending oscillations
of propellers with reference to small camber and arbitrari-
ly great initial twist., The latter exerts an. effect of the
first order on the flexural oscillations. The numerical
data have not been published as yet., but are announced for
a second report.

O;ertones

,The first ”publication on overtones of rotating bars is
that by Hohenen~er ‘(’keferegce 5). He’ obtained the over-
tone frequencies as”’fundamental frequencies of a bar Wodi-
fied in the nodal pointb by bearings, after the nodes had
been established by~ean’s of a lim-iting condition”.
. .

In one example the centrifugal force factor is com-
..puted according to”(1) for the first overtone at C = 3.9
and for the second, at c= 12.2, This was followed by
Hansen and Mesmerls experiments (reference 7), which first
revealed the occurrence of the first overtone along with
the fundamental mode. The tests reveal C = 4.4 for the
‘first overtone. Then Caldwell (reference 9) proposed C =
.3 .for, the first, and C = 4.5, for the second overtone.

,The,g..iv”&n-fig~rei s~atter .considerably. But a clo’.se
appraisal of the possibl’e centrifugal forbe coefficients

..
———__________ : , .-

! .. .
*Concerning’this condition, no certain conclusions are
possible between,rnodel and ’,ful~v”scale,,t“est~ “....,
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of the overtones is obtainable by fairly sinple means, as
shown by the ;riter~s nethod utilized for computing the
overtones (reference 6).

~or a natural oscillation Y(g) sin At, the energy
equation” gives the true frequency at:

(5)

when Y(E) :1s the true oscillation line. V* is the po-

tential energy of the elastic forces, % of the centrifu-

gal force, and T h2 the kinetic energy; k; and k~” are

the abbreviated’ summands shown at the left. Now, accordiilg
to Rayleights law, the corresponding frequency computed
fron (5) varies ‘only by a small amount of the second order -.
for both fundamental node and overtones - four ‘small varia-
tions of y. But ‘,while this affords an upper limit, in
the case of the fundamental mode,” tine approximately de-
fined overtones do not of themselves reveal whether they
represent too high or too low values.

Now tb.e true natural function Y(5) in (5) must lie
between the oscillation lines Y#) and YR,(~) which
are, for the present valid, provided the variable centrif-
ugal f’or.cesare considered effective on the ~ar. Since
they are, nearly alike in aily case (as proved’ elsewhere),
equation (5) affords approaches when either yw or Y~
is introduced. A third approach is obtained b; writing
YE in the first suimand of (5), aild YF in the second.

Theil each becones equal to . ho2 and ~2 (h. = frequency
due .to centrifugal force effect alone) and, since accord-
i.ilg to Rayleigh, the replacement of y for yE Pr s$,
involves no appreciable error, we have

(6)

as a:l approach. (However, we do not claim, ‘as was possi-
ble ‘:;iththe fundamental frequency, that (6) implicitly
der.otcs a lower linit.) ~llc two first approaches are:

.and

( 6a)

( 6b)
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The fern (6) is the nest sinplc because nornally the
nunerical deterninatioil of h nay he foregoile in favor
of a- test, -thus.leaving only ‘Am to ,be ascertained. The
latter ho 9 is the frequency with disregarded elastic

forces; that is, simply the frequency of the flexural soft
ca’ble which merely depends o-n the mass distribution. It
is readily computable and needs to be calculated no more
than once because the mass distribution for practically
all propeller forms can be quite exactly expressed as lin-
ear function of length, and any perceptible ,discrepancies
from this assumption near the, blade root may be neglected,
since they are not likely to affect the cable frequency.
The calculation of Au up to the. second overtone, is shown
iil the Appendix. - Writing the o%tained values in (6) gives:

h’ = A. + 4.15 ,@2, 1st overtone (7)

ha=h o -1-9.2 ~2, 2d overtone (8)

as generally applicable approximation formulas.

On the other hand, the use of Hohenemserls formulas
(reference 5) for the maximum-minimum properties of the
hi~?llernatural frequencies, gives some consideration to the
possille errors in the approximation formulas (6) to (6b).
The assumption that the nodes of the bar subjected to elas-
tic or centrifugal forces only, lie in both cases very
close to each other, is itself legitimate. On the cylin-
drical bar, for instance, the node of the first overtone
lies Oilce at ~ = 0.78, and then at ~ = 0;775 (= Jn
Appendix, equation (11)). Besides, as the frequency (on
account of 130henemserls stipulated limiting coilditioti for
the ilodal points) is fairly indifferent to minor displace-
ments of the nodal points from the true nodes, the over-
tones of the bar may be safely assumed as fundamental
modes of a substitute bar with supports in the nodal points,
which are available from the true oscillation line of the
elastic bar. or from the cable oscillation line. Then the
frequency computed with YE or YF becomes the upper lin--

it for the fundamental mode of the substitute bar and cons-
equently also for t-he overtone of the original bar. How-
ever , it should be borne in mind that this analysis is not
rigorous , and that in the unfavorable case. where *he dis-
crepancy of the true fromthe assumed no”dal’positions
reaches a ‘Ifinitell value, the approximation frequency of ,
the particular overtono can also become too low. Strictly
speaking, Hohenenserts upper limits e.ro not valid either,
because they approach (6a).

. .
. ,.

,..
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With this- reservation, however, all theorems applica-
ble to the fundamental mode of the substitute bar support-
ed in the nodal points~ are equally valid for the overtono
of tho original bar. In other words, the values (6a) and

(6b) are two upper linits and value (6) a lower linit for
the true frequency.

Described preferably with the first overtono of the
cylindrical %ar for which all nunerical values are exactly
kno~n, the following picture is obtained: With the con-
veatie.1 symbols for rigidity, ae.ss, and lengthy the aP-
proach (6) gives in this exanPlc:

(1)

(The value A02 is known, ~u2 = 6 ~2 is found in

the Appendix.) Likewise, (6a) gives:

22,0342 -UT_z+ 7.0 W2 = ho2 -t-1.167 kti2 > h2 (II)
mt

(equation (5), reference 5)*, and (6b) gives (YF is

equation (11) in the Appendix with C= 6):

(III)

and of t’he type shown in figure 2. (In reality, the curves
are much closer together.) Figure 3 gives the percent dis-
crepancy of frequency computed according to (I), (II), and
(III). ifow the true frequency is bounded by two upper
limits, one of which is favorable at low, the other at
higher cycles, and by a lower limit. It must lie within
the hatched zone. Since the greatest possible movement
within the zone of demarcation is less than 3

7
erceilt (at

intersection of both upper limits: @/~. = 0.28 , the accu-
racy of the calculations is good a-ridthe lower limit

Lo2 + AW2 chosen as the most appropriate formula because

of its simplicity and the unlimited validity range in W.
For the fundamental mode the conditions are not so favor-
able because yE and YF deviate more.

Following this discussion of the accuracy of approach-
es of form (6) , we return to our practical Problem} that
is, the special <~~~ulas (7) and (8)~ The only doubtful—..——————.—--.————————--———————————————————————
*Limited to the determination of ho - instead of 22.03 -
22.6 according to the employed iteration method.

— —.,—.—.— .— ,.——...-,.,,—, , , ,,,.., .-, —,. ,.——,, .,,.., , lm.. ,, ,, ,
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factor lies in the general assumption of linear cross-
section distribution.. The first overtone - formula (7) -
can be check~d” bn the ‘Vas,i”s‘of‘Ha’ns”en”alid”Mesmcrrs pro-
peller tests,, 4.’4.which gave,’ C .= The’ measurements ex-”
tend to A = 3 u. Figure 1 sho,ws the exten’t of agree-
ment %etwecn theory an”d“te-st. Hohonemserls figure, C =.
3.9; approaches t’hat of equation (7) very closely.
Caldwellts figure (fig. 1), C = 3.0, differs considera.-
lly and leads to objectionably great uncertainties, so
that in view of the proven data, ,it maY be ruled out.

The second flexural overtone of the propeller must
al$o be included within the,range of practical considera-
tion; because in thin metilpropellcrs, for instance, the
sixth harmonic”of the torque impulses may develop reso-
nant oscillations at the r.p.m~ occurring during its op-
eration. In fact, there are cases in which the second
overtone was claimed to be the cause of propeller damage
(reference 10) . Moreover, the second overtone”is of in-
terest becauso its frequency approaches the torsional
frequency of the propeller (references 3 and 4) , with a
possibility of resonance.

Test data are available for the secoild overtone of
the rotating propeller. Figure 1 shows the value for (8)
0,s well as 130henemser*s c = 12.2 and Caldwell~s C = 4.5.
The first two values reveal’ tolerable discrepancies; but
sii~ce Hohenemser~s secoild overtone had been only roughly
computed (reference 5) , and our method had proved very
satisfactory for the first overtone, the value of (8) may
be considered as being the safer figure. Caldwellts C =
4.5 is evidently much too low.

After this discussion, the chapter on flexura.1 pro-
peller modes may, so far as concerns the determination
of the oscillation frequency, be considered closed and its
results as amply safe. (The principal formula: are col-
lected in the Appendix, whi’le figure 4 contains a practi-
cal example.)

The resonance r.p.m. for m“ ‘excitations ,per rotation
are given with

. .

e=~ ‘(9)

Resonance is.possible OY1lY when m2 > c; otherwise,
the intersections of the straight line k = m O with the
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,.-!..

frequeilcy curves are imaginary or infinite. If w, as com-
puted from (9), exceeds 1.5 times the static frequency for
the fundamental mode, they are practically negligible be-
cause they lie above existing r.p.m.

.
. .

APPEitDIX

Ca%le Oscillations

With y(x) = cable line (free cable end at x=2),
t = time interval, m = mass, S = tension, the differen-
tial equation of the cable oscillation reads:

a2Y’ a (~ 55 ,)
~.

m ——— = —-.. S = ti2~ m X dxw’hereat2
ax { ax x.

The new variable
~

Z=l-t introduced for simplicity,

gives:

1. For m= constant ,

The equation of the fundamental modes

Y=Y(Z) sinht

L2
in coi~junction with the abbreviation = C gives the cus-~-jg

tomary differential equation of the second order:

(lo)

of the type of Bessel’s differential equation. Posing the
solution as power series and defining its coefficient from
the differential equation, results in:

+ c(c-1~ (c-3~ (C-61 24 ;————- —..—..— -.————
4X 9 X 16

(11)
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The limiting condition Y(l) = O which, as is easily
.. seen, can equally well be yritten in the form of infinite

product:
.. ,..,

Y(:) = O = (C-1) (C-6) (c-15) (C-28)

[C-n (2n-1)1

with readily recognizable roots afford the frequencies

6, 10, etc .).’

2. For m= ‘o “ the differential equation

d’y
––~ z (3 -
dz

2z)+:;6 (l- z)+6Cy=0

replaces (10) , resolving to:

y(z) = 1 - cz + Q~-:=~~ z2

C(c-1) (c - Q-)
3;23 + )

C(c-1) (c - Q (c-5)
-..—..——..-—-..—_— _ _–––L_––L_––Zi ______ z4

3X6 3X6X1O

C(c-1) (c-3 (C-5) (C-8)
— ...—-.——— —___________________

3x6X10X15
=5

(C(c-1) c - Q] (c-5) (c-&3) (c - Q)
+ ---–––--–--–––--3-~––––—–---––--––––––~-– z6 T

3X6 X1 OX 15X21

The limit ing condit ion Y(l) = O affords (%ut not as
readily as in the first case

2
the roots C and consequent-

ly, the frequencies: A? =W ,k~ = 4.15 w’s ha = 9.2 @
etc.

The oscillation line of the fundamental mode” is a
straight for any mass distribution, its frequency equal to
the simple r.p. m.
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Collection of Formulas

Discrepancies in the data and method of representa-
tion of different reports on flexural propeller oscilla-
tions suggested a, survey and supplementary information for
the purpose of coordination of the dependability of the
mechanical principles for the calculation of the resonance
r.p.m.

The fundamental frequency of any propeller is:

2 4

()

6

()

h2=1+143f_ ( ‘)- 0.20 0 ()LJJ

x;/
●

x;)
+ 0.05

X;)
o

valid for

the

(A corresponding series expansion is necessary for

o<~w–s m range. )
o

According to tests (reference 7):

/).’2k) )2= i+ 1.45 (&-,
o 0

Test range u<l__0SX–.5:D, i.e., oO~ 0.626.
0 ,, 0

Theoretically, the first overtone is:

2 2

()x; ()
= 1 -1- 4.15. #-

0

valid for

Tests (reference 7) revealed:

()
2

0

02
——
J

= 1 + 4.4
0
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No expezimen’tal tiatiaare. “ava”ilatile
tone. “The theoretical ‘valtie is f i@zred

A.: 2

,..-
()
; ~;.. ,

()
=. 1.+ 9 *.2 ‘-w—

., Lo,.. . .. . . ,.
....,

valid for 05;-5W:
o

. . .

The resonance r.p. m. lie,s at.

w-herein ho is ‘the static frequency,

on the i$ec,o’ndov6r-
at : .,

. “.. ..- .

i,
.’.

c the coefficient

W2()
,,

of “––A. ; ‘ in “the’a~ove” equations for the fundamental fre-

quency: first and second over.tones, and m, the excitation
pcr cycle. At higher revolut”i’ons .(O/Ao 2 1) , formula (4)

with the higher powers can be used for the fundamental mode.

Translation’ ly J. Vanier,
National Advisory Committee
for Aeronautics.
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Figure l.- Oscillationfrequenciesof
rotatingpropellerversus

revolutions.Frequency~ and revolution
w are referred to static frequency Ao.
The scalesfor ‘JJ/~cIhave been chosen
such that each plot approximately
covers the normal range of repeller

r I
II :.

operation. Tne scale for A Anis the same I o6
Ynroughoutso as to bring
centage frequencyrise in

.-l

out- the per- 1 i i=

the three cases. 0/28 w/!Ao z
m

Figure 2.- Illustrationof ~
the three ~

s
approachesI, II, and III. ~

g

Fibgare4.- Frequencies
of funda-

mental mode and first
and second overtone
f~r a practically
feasible examplewhere-
by the three static
frequenciesare as
1:3:6. The dashed lines
intersecttinefrequency
curves at the
practicallyhighest
possible resonance
cycles. I

I’igure 3.- Discrepanciesof frequencies
computedaccording to II,

L_ >

III in percent of frequencycomputed
conformablyto I.
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